

Linking Lateral Carbon Transport to Vertical Carbon Fluxes across the Terrestrial-Aquatic Interface in a Thawing Permafrost Peatland

Cheristy P. Jones¹ (cheristy.jones@unh.edu), McKenzie A. Kuhn¹, Lyreshka Castro Morales², Claire Beezley³, Kenneth De Leon Colon⁴, Clarice R. Perryman¹, Ruth K. Varner¹ ¹University of New Hampshire, ²Alaska Pacific University, ³Georgetown University, ⁴Clemson University

SWEDISH POLAR **RESEARCH SECRETARIAT**

RESEARCH QUESTIONS

Overall Project Questions:

- 1) How does belowground carbon (C) quantity and quality change across the terrestrialaquatic interface?
- 2) What is the importance of the lateral flow of this C to net CO_2 & methane (CH₄) emissions?
- 3) What role do CH_4 cycling microbes play in predicting CH_4 flux variability?

How do dissolved CH_4 concentrations affect CH_4 fluxes across a thaw gradient?

CONSEQUENCES OF A WARMING ARCTIC

- Permafrost thaw enhances the connectivity of terrestrial and aquatic environments by altering lateral flux of C due to active layer thickening and shifts in flow paths.² • Although the importance of lateral C flux in the Arctic C cycle is increasingly recognized, **the**
- proportions of different C species transported to streams is poorly quantified and are rarely linked to vertical fluxes across the landscape.³

STUDY SITE: STORDALEN MIRE, SWEDEN

Study Site

Stream Transect

METHODS

Location: Stordalen Mire is a subarctic catchment in northern Sweden (15 km², 68°21' N 18°49' E), characterized by patches of raised permafrost palsas (i.e., frozen peat mounds) and has experienced permafrost thaw for decades.⁴

Sites: Three transects (~20 m in length, ~10 m apart) spanning a gradual thaw gradient from a palsa to a low-turbidity stream and three additional transects that span an abrupt thaw gradient from a palsa to a post-glacial lake.

Flux Chamber

Stainless Steel Sipper

• Sampled transects weekly from June-August Terrestrial

- $CH_4 \& CO_2$ vertical fluxes \rightarrow Static flux chamber
- Porewater (pCH₄, pCO₂, DOC, DIC, POC) \rightarrow 60 ml polypropylene syringe with stopcock attached to stainless steel sipper (0.25" diameter), pulling 20cm below peat surface

Aquatic

- Diffusive fluxes \rightarrow Wind-based flux model⁵
- Ebullitive fluxes \rightarrow Bubble traps
- pCH₄, pCO₂, DOC, DIC, POC

Lake Transect

Bubble Trap

Fig 3. Principal component analysis between the a) transect leading into the lake (blue shaded circles) and stream (orange shaded circles) and **b**) water surface for the lake (blue) and stream (orange). Biplot vectors fit show the directions in which environmental measurements correlate most strongly with the ordination configuration. For environmental vectors: WTD = water table depth, ALD = active layer depth, DO= dissolved oxygen, Cond= conductivity, TDS= Total dissolved solids. All vegetation characteristics measured by percent cover.

Polar Research Secretariat and SITES for the support of the work done at the Abisko Scientific Research Station (SRC 4.3-2021-00164), the University of New Hampshire College of Engineering and Physical Sciences First Year PhD Fellowship and the CARPE NRT Fellowship (NSF #2125868). We would also like to thank the EMERGE REU students and Katie Bennett for field and laboratory assistance.

REFERENCES: [1] Walvoord, M.A. et al. (2016) Vadose Zo. J. [2] Tank, S.E. et al. (2018). Limnol. Oceanogr. Lett. [3] Varner, R.K. et al. (2022). *Phil. Trans. R. Soc. A.* [4] Jansen, J. et al. (2020). *Geophy. Lett.*

